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PASCALO7 Challenge
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‘Difﬁcult’ objects aren’t scored, but ‘truncated’ ones are
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The rat race for medals
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*Qut of 20 classes, we currently get 10 golds & 6
silvers

*New Oxford/MSR results very impressive, but
we still win on some categories (person)

*Fast matlab code (2 sec/image) available online



Model overwew

-Model consists of root filter plus
deformable parts

-Training data consists of bounding boxes
(part structure learned automatically)



Rich related work

Fischler & Elschlager 73, Burl et al 98, loffe & Forsyth 0l,
Mohan et al 01, Belongie et al 02, Fergus et al 03, Felzenszwalb

& Huttenlocher 05, Crandall et al 05, Berg et al 05, Liebe et al
05, Sudderth et al 05, Amit & Trouve 07....

Our flavor:
Dense window scanning (no feature detection)
Multiscale histogram-of-gradient features
Discriminative (SVM) training with weakly-labeled data



Image features -
histograms of gradients

*Our implementation of DalalTriggs HOG features



Learned model

fwlx) =w- - P(x

positive negative
weights weights




What do negative weights mean!

pedestrian]’ X EedleStl‘land
model ¥ +~~Jbackgroun
< | */Imodel

Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)



Multi-scale star model

root filter
8x8
resolution



Mu It| scale star model

root filter  part filters bounded
8x8 4x4 quadratic
resolution  resolution  spatial model



‘Cleaner’ multiscale
Image_wp ___amid Pyramid of 8x8 HOG cells
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Part filters are not 4x4, but 8x8 at a finer image resolution
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Some stats

*We use 1.05 scaling between pyramid levels

1

* Training time: 3-4 hours per class using 1 cpu,
including learning part models automatically

* Jesting time: 2 seconds per image per model
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non-gaussian
shape models
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fw(x) = Max w - d(x, 2)

z = vector of part offsets
w = concatenation of filters & deformation parameters

®(z, 2)= concatenation of HOG features & part offsets
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Linear vs convex models

A




Latent SVMs

fw(x) = Max w - b (x, 2)

Assume we are given positive and
negative training windows {xi}

w* = arg min \||w||*+
Z max (0,1 — f,(x;)) + Z max (0, 1 + fu(2;))
1EPOS 1ENneg

If f() is linear in w, this is a standard SVM (convex)
If f() is arbitrary, this (in general) is not convex
If f() is convex in w, the training objective is ‘semi-convex’

(Instance of LeCun’s Energy Based Model)



Latent SVMs

fw(x) = Max w - P(x, 2)

Assume we are given positive and
negative training windows {xi}

= arg min AlJwl[*4
w

Z max((), 1l —w- ¢(£IZ’Z, ZZ)) + Z maX(07 1+ fw(xz))

1EPpos 1Eneg

Optimization is convex if we fix the z; for positive x;
(ie, if we know part locations on positives)



Train with coordinate
descent

|) Given w, for each positive x; find z; that maximizes
w - P(x;, 2;)
(optimize location of parts on positives)

2) Given positive z, find w that optimizes convex
objective

It can be show that this reduces the overall (honconvex)
objective on each iteration so we converge to a local
minimum.



Root filter initialization

*VWe select the aspect and size by a heuristic tuned on

2006 data (use most common aspect and smallest area > 80% of training
bounding boxes)

*Train a root filter with SVM-light: use non-truncated
positives (warped to fixed aspect & size) and random
negatives f Lok | f



Root filter refinement

*For each positive training example, estimate a
latent box that overlaps original box > 50%

* Automatically adjust bounding boxes with a LSYM
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‘Tlghtens head weight



Part filter initialization

* ook for regions in root filter with lots of
energy - part filter initialized to subwindow
doubled in resolution

*Spatial model allows for a bounded offset
from original anchor point - quadratic




Model update

*Update each positive with best-scoring ®(x;, 2;)
with >50% overlap of original box

*Collect negative ®(x;, z;)'s by finding margin
violations on negative images

eUse ®(x;, z;)'s to train a new detector (w) with
SVM-light (Joachims)

*Repeat update |0 times
Tried online updates; couldn’t get it to work (Yan?)



Component analysis
PASCAL Person2006

| —®— Root (0.18)

| —=— Root+Latent (0.24)

' Parts+Latent (0.29) ;
Root+Parts+Latent (0.34) | -
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*Factor of 2 improvement over ‘06 winner - DalalTriggs (.16)
* Adjustment of b.box helps rigid template -
*Parts help - green

*Multiscale (parts + root together) helps - cyan



A look back

Training part-based models with classification
machinery helps (cause of implicit bg model?)

Good classification <=> good object detection !

Oxford’s results suggest so, but....



Classification vs Obj. Detection

False positives per window  fraction of detections that
overlaps ground truth

DET - train (motion set1+static) / test (motion set1+static) Recall-Precision —— different descriptors on INRIA static person database
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HOG-based detectors again éignificantly outpierform the wavelet based one, but surprisingly

the combined static and motion HOG detector does not seem to offer a significant advantage D I I ’ h : 2 7 d I 5 .F -
over the static HOG one: The static detector gives an AP of 0.553 compared to 0.527 for the a a. S t e S I S P : goo C as S I I Catl O n

motion detector. These results are surprising and disappointing because Sect. 6.5.2, where we

used DET curves (c.f. Sect. B.1) for evaluations, shows that for exactly the same data set, the d ¥ I d d t'
individual window classifier for the motion detector gives significantly better performance than O e S n Ot I I I I P y go O ete C I O n




Why not score FPPWV!?

|) Score is tied to resolution of scan
(not valid for segmentation/pyramid-based search)

2) We can directly score the task we care about
(DAF: Can we use it to avoid hitting pedestrians?)

2) We need to account for non-max suppression (non-
trivial: “auto-correlation” of detector response should be
smooth and peaky)




Conclusion

What makes our part model work?

-Histograms-of-gradient features

-Discriminatively-trained

-Multi-scale




